Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 261, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38199986

RESUMO

Meeting global commitments to conservation, climate, and sustainable development requires consideration of synergies and tradeoffs among targets. We evaluate the spatial congruence of ecosystems providing globally high levels of nature's contributions to people, biodiversity, and areas with high development potential across several sectors. We find that conserving approximately half of global land area through protection or sustainable management could provide 90% of the current levels of ten of nature's contributions to people and meet minimum representation targets for 26,709 terrestrial vertebrate species. This finding supports recent commitments by national governments under the Global Biodiversity Framework to conserve at least 30% of global lands and waters, and proposals to conserve half of the Earth. More than one-third of areas required for conserving nature's contributions to people and species are also highly suitable for agriculture, renewable energy, oil and gas, mining, or urban expansion. This indicates potential conflicts among conservation, climate and development goals.


Assuntos
Ecossistema , Planetas , Humanos , Biodiversidade , Agricultura , Clima
2.
Nat Commun ; 14(1): 5863, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735160

RESUMO

Anthropogenic activities threaten global biodiversity and ecosystem services. Yet, area-based conservation efforts typically target biodiversity protection whilst minimising conflict with economic activities, failing to consider ecosystem services. Here we identify priority areas that maximise both the protection of mangrove biodiversity and their ecosystem services. We reveal that despite 13.5% of the mangrove distribution being currently strictly protected, all mangrove species are not adequately represented and many areas that provide disproportionally large ecosystem services are missed. Optimising the placement of future conservation efforts to protect 30% of global mangroves potentially safeguards an additional 16.3 billion USD of coastal property value, 6.1 million people, 1173.1 Tg C, and 50.7 million fisher days yr-1. Our findings suggest that there is a pressing need for including ecosystem services in protected area design and that strategic prioritisation and coordination of mangrove conservation could provide substantial benefits to human wellbeing.


Assuntos
Biodiversidade , Ecossistema , Humanos , Efeitos Antropogênicos
3.
Ecol Appl ; 33(4): e2852, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946332

RESUMO

Climate change is already having profound effects on biodiversity, but climate change adaptation has yet to be fully incorporated into area-based management tools used to conserve biodiversity, such as protected areas. One main obstacle is the lack of consensus regarding how impacts of climate change can be included in spatial conservation plans. We propose a climate-smart framework that prioritizes the protection of climate refugia-areas of low climate exposure and high biodiversity retention-using climate metrics. We explore four aspects of climate-smart conservation planning: (1) climate model ensembles; (2) multiple emission scenarios; (3) climate metrics; and (4) approaches to identifying climate refugia. We illustrate this framework in the Western Pacific Ocean, but it is equally applicable to terrestrial systems. We found that all aspects of climate-smart conservation planning considered affected the configuration of spatial plans. The choice of climate metrics and approaches to identifying refugia have large effects in the resulting climate-smart spatial plans, whereas the choice of climate models and emission scenarios have smaller effects. As the configuration of spatial plans depended on climate metrics used, a spatial plan based on a single measure of climate change (e.g., warming) will not necessarily be robust against other measures of climate change (e.g., ocean acidification). We therefore recommend using climate metrics most relevant for the biodiversity and region considered based on a single or multiple climate drivers. To include the uncertainty associated with different climate futures, we recommend using multiple climate models (i.e., an ensemble) and emission scenarios. Finally, we show that the approaches we used to identify climate refugia feature trade-offs between: (1) the degree to which they are climate-smart, and (2) their efficiency in meeting conservation targets. Hence, the choice of approach will depend on the relative value that stakeholders place on climate adaptation. By using this framework, protected areas can be designed with improved longevity and thus safeguard biodiversity against current and future climate change. We hope that the proposed climate-smart framework helps transition conservation planning toward climate-smart approaches.


Assuntos
Conservação dos Recursos Naturais , Água do Mar , Conservação dos Recursos Naturais/métodos , Concentração de Íons de Hidrogênio , Biodiversidade , Incerteza , Mudança Climática , Ecossistema
4.
Conserv Biol ; 37(3): e14048, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36661081

RESUMO

Protected areas are a key instrument for conservation. Despite this, they are vulnerable to risks associated with weak governance, land-use intensification, and climate change. We used a novel hierarchical optimization approach to identify priority areas for expanding the global protected area system that explicitly accounted for such risks while maximizing protection of all known terrestrial vertebrate species. To incorporate risk categories, we built on the minimum set problem, where the objective is to reach species distribution protection targets while accounting for 1 constraint, such as land cost or area. We expanded this approach to include multiple objectives accounting for risk in the problem formulation by treating each risk layer as a separate objective in the problem formulation. Reducing exposure to these risks required expanding the area of the global protected area system by 1.6% while still meeting conservation targets. Incorporating risks from weak governance drove the greatest changes in spatial priorities for protection, and incorporating risks from climate change required the largest increase (2.52%) in global protected area. Conserving wide-ranging species required countries with relatively strong governance to protect more land when they bordered nations with comparatively weak governance. Our results underscore the need for cross-jurisdictional coordination and demonstrate how risk can be efficiently incorporated into conservation planning. Planeación de las áreas protegidas para conservar la biodiversidad en un futuro incierto.


Aunque las áreas protegidas son un instrumento clave para la conservación, no dejan de ser vulnerables a los riesgos asociados a una gestión pobre, la intensificación del uso de suelo y al cambio climático. Usamos una estrategia novedosa de optimización jerárquica para identificar las áreas prioritarias para la expansión del sistema global de áreas protegidas. La estrategia consideró de manera explícita los riesgos mencionados y también maximizó la protección de todas las especies conocidas de vertebrados terrestres. Para incorporar a las categorías de riesgo partimos del mínimo problema establecido, en donde el objetivo es lograr los objetivos de protección de la distribución de especies mientras se considera sólo una restricción, como el costo o área del suelo. Expandimos esta estrategia para que incluyera varios objetivos que consideraran el riesgo desde la formulación del problema mediante el manejo de cada nivel de riesgo como un objetivo aparte durante la formulación del problema. La reducción de la exposición a estos riesgos requirió que se expandiera el área total del sistema global de áreas protegidas en un 1.6% y así todavía cumplir con los objetivos de conservación. La incorporación de riesgos a partir de una gestión pobre fue el principal impulsor de cambios en las prioridades espaciales para la protección, mientras que la incorporación de riesgos a partir del cambio climático requirió el mayor incremento (2.52%) del área protegida a nivel mundial. La conservación de especies con distribución amplia requirió que los países con una gestión relativamente fuerte protegieran más suelo al tener fronteras con países con una gestión pobre en comparación son la suya. Nuestros resultados destacan la necesidad de una coordinación entre jurisdicciones y demuestran cómo puede incorporarse el riesgo de manera exitosa a la planeación de la conservación.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Mudança Climática , Incerteza , Ecossistema
5.
Trends Ecol Evol ; 38(2): 143-155, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36210287

RESUMO

Integrative and proactive conservation approaches are critical to the long-term persistence of biodiversity. Molecular data can provide important information on evolutionary processes necessary for conserving multiple levels of biodiversity (genes, populations, species, and ecosystems). However, molecular data are rarely used to guide spatial conservation decision-making. Here, we bridge the fields of molecular ecology (ME) and systematic conservation planning (SCP) (the 'why') to build a foundation for the inclusion of molecular data into spatial conservation planning tools (the 'how'), and provide a practical guide for implementing this integrative approach for both conservation planners and molecular ecologists. The proposed framework enhances interdisciplinary capacity, which is crucial to achieving the ambitious global conservation goals envisioned for the next decade.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Ecologia , Biodiversidade , Evolução Biológica
7.
Nat Ecol Evol ; 5(11): 1499-1509, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34429536

RESUMO

To meet the ambitious objectives of biodiversity and climate conventions, the international community requires clarity on how these objectives can be operationalized spatially and how multiple targets can be pursued concurrently. To support goal setting and the implementation of international strategies and action plans, spatial guidance is needed to identify which land areas have the potential to generate the greatest synergies between conserving biodiversity and nature's contributions to people. Here we present results from a joint optimization that minimizes the number of threatened species, maximizes carbon retention and water quality regulation, and ranks terrestrial conservation priorities globally. We found that selecting the top-ranked 30% and 50% of terrestrial land area would conserve respectively 60.7% and 85.3% of the estimated total carbon stock and 66% and 89.8% of all clean water, in addition to meeting conservation targets for 57.9% and 79% of all species considered. Our data and prioritization further suggest that adequately conserving all species considered (vertebrates and plants) would require giving conservation attention to ~70% of the terrestrial land surface. If priority was given to biodiversity only, managing 30% of optimally located land area for conservation may be sufficient to meet conservation targets for 81.3% of the terrestrial plant and vertebrate species considered. Our results provide a global assessment of where land could be optimally managed for conservation. We discuss how such a spatial prioritization framework can support the implementation of the biodiversity and climate conventions.


Assuntos
Carbono , Conservação dos Recursos Naturais , Animais , Biodiversidade , Espécies em Perigo de Extinção , Humanos , Vertebrados
9.
Conserv Biol ; 35(2): 634-642, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32761662

RESUMO

Protected-area systems should conserve intraspecific genetic diversity. Because genetic data require resources to obtain, several approaches have been proposed for generating plans for protected-area systems (prioritizations) when genetic data are not available. Yet such surrogate-based approaches remain poorly tested. We evaluated the effectiveness of potential surrogate-based approaches based on microsatellite genetic data collected across the Iberian Peninsula for 7 amphibian and 3 reptilian species. Long-term environmental suitability did not effectively represent sites containing high genetic diversity (allelic richness). Prioritizations based on long-term environmental suitability had similar performance to random prioritizations. Geographic distances and resistance distances based on contemporary environmental suitability were not always effective surrogates for identification of combinations of sites that contain individuals with different genetic compositions. Our results demonstrate that population genetic data based on commonly used neutral markers can inform prioritizations, and we could not find an adequate substitute. Conservation planners need to weigh the potential benefits of genetic data against their acquisition costs.


Evaluación de los Sustitutos de la Diversidad Genética para la Planeación de la Conservación Resumen Los sistemas de áreas protegidas deberían conservar la diversidad genética intraespecífica. Ya que para obtener datos genéticos se requieren recursos, se han propuesto distintas estrategias para generar los planes para los sistemas de áreas protegidas (priorizaciones) cuando los datos genéticos no están disponibles. A pesar de lo anterior, dichas estrategias basadas en sustitutos han sido poco evaluadas. Evaluamos la efectividad del potencial de las estrategias basadas en sustitutos cuya base son los datos genéticos de microsatélites obtenidos en toda la Península Ibérica y correspondientes a siete especies de anfibios y a tres de reptiles. La idoneidad ambiental a largo plazo no representó efectivamente los sitios que contienen una diversidad genética alta (riqueza de alelos). Las priorizaciones basadas en la idoneidad ambiental a largo plazo tuvieron un desempeño similar a las priorizaciones aleatorias. Las distancias geográficas y las distancias de resistencia basadas en la idoneidad ambiental contemporánea no siempre fueron sustitutos efectivos para la identificación de las combinaciones de sitios que contienen individuos con composiciones genéticas diferentes. Nuestros resultados demuestran que los datos genéticos de una población basados en marcadores neutrales de uso común pueden informar a las priorizaciones y que no pudimos encontrar un sustituto adecuado. Los planificadores de la conservación necesitan sopesar los beneficios potenciales de los datos genéticos contra sus costos de adquisición.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Europa (Continente) , Variação Genética
10.
Ecol Evol ; 10(19): 10353-10363, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33072264

RESUMO

Reduced representation genome sequencing has popularized the application of single nucleotide polymorphisms (SNPs) to address evolutionary and conservation questions in nonmodel organisms. Patterns of genetic structure and diversity based on SNPs often diverge from those obtained with microsatellites to different degrees, but few studies have explicitly compared their performance under similar sampling regimes in a shared analytical framework. We compared range-wide patterns of genetic structure and diversity in two amphibians endemic to the Iberian Peninsula: Hyla molleri and Pelobates cultripes, based on microsatellite (18 and 14 loci) and SNP (15,412 and 33,140 loci) datasets of comparable sample size and spatial extent. Model-based clustering analyses with STRUCTURE revealed minor differences in genetic structure between marker types, but inconsistent values of the optimal number of populations (K) inferred. SNPs yielded more repeatable and less admixed ancestries with increasing K compared to microsatellites. Genetic diversity was weakly correlated between marker types, with SNPs providing a better representation of southern refugia and of gradients of genetic diversity congruent with the demographic history of both species. Our results suggest that the larger number of loci in a SNP dataset can provide more reliable inferences of patterns of genetic structure and diversity than a typical microsatellite dataset, at least at the spatial and temporal scales investigated.

11.
PeerJ ; 8: e9258, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32518737

RESUMO

The resources available for conserving biodiversity are limited, and so protected areas need to be established in places that will achieve objectives for minimal cost. Two of the main algorithms for solving systematic conservation planning problems are Simulated Annealing (SA) and exact integer linear programing (EILP) solvers. Using a case study in BC, Canada, we compare the cost-effectiveness and processing times of SA used in Marxan versus EILP using both commercial and open-source algorithms. Plans for expanding protected area systems based on EILP algorithms were 12-30% cheaper than plans using SA, due to EILP's ability to find optimal solutions as opposed to approximations. The best EILP solver we examined was on average 1,071 times faster than the SA algorithm tested. The performance advantages of EILP solvers were also observed when we aimed for spatially compact solutions by including a boundary penalty. One practical advantage of using EILP over SA is that the analysis does not require calibration, saving even more time. Given the performance of EILP solvers, they can be used to generate conservation plans in real-time during stakeholder meetings and can facilitate rapid sensitivity analysis, and contribute to a more transparent, inclusive, and defensible decision-making process.

12.
Nature ; 580(7802): 232-234, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269340

RESUMO

Environmental change is rapidly accelerating, and many species will need to adapt to survive1. Ensuring that protected areas cover populations across a broad range of environmental conditions could safeguard the processes that lead to such adaptations1-3. However, international conservation policies have largely neglected these considerations when setting targets for the expansion of protected areas4. Here we show that-of 19,937 vertebrate species globally5-8-the representation of environmental conditions across their habitats in protected areas (hereafter, niche representation) is inadequate for 4,836 (93.1%) amphibian, 8,653 (89.5%) bird and 4,608 (90.9%) terrestrial mammal species. Expanding existing protected areas to cover these gaps would encompass 33.8% of the total land surface-exceeding the current target of 17% that has been adopted by governments. Priority locations for expanding the system of protected areas to improve niche representation occur in global biodiversity hotspots9, including Colombia, Papua New Guinea, South Africa and southwest China, as well as across most of the major land masses of the Earth. Conversely, we also show that planning for the expansion of protected areas without explicitly considering environmental conditions would marginally reduce the land area required to 30.7%, but that this would lead to inadequate niche representation for 7,798 (39.1%) species. As the governments of the world prepare to renegotiate global conservation targets, policymakers have the opportunity to help to maintain the adaptive potential of species by considering niche representation within protected areas1,2.


Assuntos
Conservação dos Recursos Naturais/legislação & jurisprudência , Ecossistema , Política Ambiental/legislação & jurisprudência , Internacionalidade , Animais , Biodiversidade , Governo Federal , Cooperação Internacional/legislação & jurisprudência , Tamanho da Amostra
13.
Ecol Evol ; 9(23): 13375-13388, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871651

RESUMO

New Guinea is a topographically and biogeographically complex region that supports unique endemic fauna. Studies describing the population connectivity of species through this region are scarce. We present a population and landscape genetic study on the endemic malaria-transmitting mosquito, Anopheles koliensis (Owen). Using mitochondrial and nuclear sequence data, as well as microsatellites, we show the evidence of geographically discrete population structure within Papua New Guinea (PNG). We also confirm the existence of three rDNA ITS2 genotypes within this mosquito and assess reproductive isolation between individuals carrying different genotypes. Microsatellites reveal the clearest population structure and show four clear population units. Microsatellite markers also reveal probable reproductive isolation between sympatric populations in northern PNG with different ITS2 genotypes, suggesting that these populations may represent distinct cryptic species. Excluding individuals belonging to the newly identified putative cryptic species (ITS2 genotype 3), we modeled the genetic differences between A. koliensis populations through PNG as a function of terrain and find that dispersal is most likely along routes with low topographic relief. Overall, these results show that A. koliensis is made up of geographically and genetically discrete populations in Papua New Guinea with landscape topography being important in restricting dispersal.

14.
Proc Natl Acad Sci U S A ; 114(48): 12755-12760, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29087942

RESUMO

Protected areas buffer species from anthropogenic threats and provide places for the processes that generate and maintain biodiversity to continue. However, genetic variation, the raw material for evolution, is difficult to capture in conservation planning, not least because genetic data require considerable resources to obtain and analyze. Here we show that freely available environmental and geographic distance variables can be highly effective surrogates in conservation planning for representing adaptive and neutral intraspecific genetic variation. We obtained occurrence and genetic data from the IntraBioDiv project for 27 plant species collected over the European Alps using a gridded sampling scheme. For each species, we identified loci that were potentially under selection using outlier loci methods, and mapped their main gradients of adaptive and neutral genetic variation across the grid cells. We then used the cells as planning units to prioritize protected area acquisitions. First, we verified that the spatial patterns of environmental and geographic variation were correlated, respectively, with adaptive and neutral genetic variation. Second, we showed that these surrogates can predict the proportion of genetic variation secured in randomly generated solutions. Finally, we discovered that solutions based only on surrogate information secured substantial amounts of adaptive and neutral genetic variation. Our work paves the way for widespread integration of surrogates for genetic variation into conservation planning.


Assuntos
Conservação dos Recursos Naturais/métodos , Variação Genética , Modelos Genéticos , Plantas/genética , Adaptação Biológica/genética , Altitude , Biodiversidade , Europa (Continente) , Plantas/classificação , Refúgio de Vida Selvagem
15.
Mol Ecol ; 25(2): 470-86, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26588177

RESUMO

Landscape genetics lacks explicit methods for dealing with the uncertainty in landscape resistance estimation, which is particularly problematic when sample sizes of individuals are small. Unless uncertainty can be quantified, valuable but small data sets may be rendered unusable for conservation purposes. We offer a method to quantify uncertainty in landscape resistance estimates using multimodel inference as an improvement over single model-based inference. We illustrate the approach empirically using co-occurring, woodland-preferring Australian marsupials within a common study area: two arboreal gliders (Petaurus breviceps, and Petaurus norfolcensis) and one ground-dwelling antechinus (Antechinus flavipes). First, we use maximum-likelihood and a bootstrap procedure to identify the best-supported isolation-by-resistance model out of 56 models defined by linear and non-linear resistance functions. We then quantify uncertainty in resistance estimates by examining parameter selection probabilities from the bootstrapped data. The selection probabilities provide estimates of uncertainty in the parameters that drive the relationships between landscape features and resistance. We then validate our method for quantifying uncertainty using simulated genetic and landscape data showing that for most parameter combinations it provides sensible estimates of uncertainty. We conclude that small data sets can be informative in landscape genetic analyses provided uncertainty can be explicitly quantified. Being explicit about uncertainty in landscape genetic models will make results more interpretable and useful for conservation decision-making, where dealing with uncertainty is critical.


Assuntos
Genética Populacional , Marsupiais/genética , Modelos Genéticos , Animais , Variação Genética , Técnicas de Genotipagem , Funções Verossimilhança , Repetições de Microssatélites , Modelos Estatísticos , Queensland , Tamanho da Amostra , Análise de Sequência de DNA , Incerteza
16.
Front Microbiol ; 6: 1219, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26594204

RESUMO

Mononuclear molybdenum enzymes of the dimethylsulfoxide (DMSO) reductase family occur exclusively in prokaryotes, and a loss of some these enzymes has been linked to a loss of bacterial virulence in several cases. The MobA protein catalyzes the final step in the synthesis of the molybdenum guanine dinucleotide (MGD) cofactor that is exclusive to enzymes of the DMSO reductase family. MobA has been proposed as a potential target for control of virulence since its inhibition would affect the activities of all molybdoenzymes dependent upon MGD. Here, we have studied the phenotype of a mobA mutant of the host-adapted human pathogen Haemophilus influenzae. H. influenzae causes and contributes to a variety of acute and chronic diseases of the respiratory tract, and several enzymes of the DMSO reductase family are conserved and highly expressed in this bacterium. The mobA mutation caused a significant decrease in the activities of all Mo-enzymes present, and also resulted in a small defect in anaerobic growth. However, we did not detect a defect in in vitro biofilm formation nor in invasion and adherence to human epithelial cells in tissue culture compared to the wild-type. In a murine in vivo model, the mobA mutant showed only a mild attenuation compared to the wild-type. In summary, our data show that MobA is essential for the activities of molybdenum enzymes, but does not appear to affect the fitness of H. influenzae. These results suggest that MobA is unlikely to be a useful target for antimicrobials, at least for the purpose of treating H. influenzae infections.

17.
Conserv Biol ; 29(6): 1626-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26171646

RESUMO

Decisions need to be made about which biodiversity management actions are undertaken to mitigate threats and about where these actions are implemented. However, management actions can interact; that is, the cost, benefit, and feasibility of one action can change when another action is undertaken. There is little guidance on how to explicitly and efficiently prioritize management for multiple threats, including deciding where to act. Integrated management could focus on one management action to abate a dominant threat or on a strategy comprising multiple actions to abate multiple threats. Furthermore management could be undertaken at sites that are in close proximity to reduce costs. We used cost-effectiveness analysis to prioritize investments in fire management, controlling invasive predators, and reducing grazing pressure in a bio-diverse region of southeastern Queensland, Australia. We compared outcomes of 5 management approaches based on different assumptions about interactions and quantified how investment needed, benefits expected, and the locations prioritized for implementation differed when interactions were taken into account. Managing for interactions altered decisions about where to invest and in which actions to invest and had the potential to deliver increased investment efficiency. Differences in high priority locations and actions were greatest between the approaches when we made different assumptions about how management actions deliver benefits through threat abatement: either all threats must be managed to conserve species or only one management action may be required. Threatened species management that does not consider interactions between actions may result in misplaced investments or misguided expectations of the effort required to mitigate threats to species.


Assuntos
Criação de Animais Domésticos , Conservação dos Recursos Naturais/métodos , Análise Custo-Benefício , Incêndios , Espécies Introduzidas , Biodiversidade , Conservação dos Recursos Naturais/economia , Modelos Teóricos , Queensland
18.
Science ; 350(6265): 1255-8, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26785490

RESUMO

Migratory species depend on a suite of interconnected sites. Threats to unprotected links in these chains of sites are driving rapid population declines of migrants around the world, yet the extent to which different parts of the annual cycle are protected remains unknown. We show that just 9% of 1451 migratory birds are adequately covered by protected areas across all stages of their annual cycle, in comparison with 45% of nonmigratory birds. This discrepancy is driven by protected area placement that does not cover the full annual cycle of migratory species, indicating that global efforts toward coordinated conservation planning for migrants are yet to bear fruit. Better-targeted investment and enhanced coordination among countries are needed to conserve migratory species throughout their migratory cycle.


Assuntos
Migração Animal , Aves , Conservação dos Recursos Naturais , Animais , Cruzamento , Dinâmica Populacional , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...